PEMANFAATAN PASTEURISASI, PEMBEKUAN, DAN VACUUM-SEALING UNTUK MENINGKATKAN UMUR SIMPAN AIR KELAPA TUA
Abstract
Air kelapa tua (mature coconut water, MCW) jarang diolah lebih lanjut karena umur simpan yang pendek menyebabkan perubahan sensoris secara signifikan. Penelitian ini bertujuan mengevaluasi pengaruh kombinasi pasteurisasi, pembekuan, dan vacuum-sealing terhadap mutu sensori serta umur simpan MCW. Metode penelitian meliputi perlakuan pasteurisasi pada tiga variasi suhu dan waktu (80–85°C selama 5 menit; 72–75°C selama 15 menit; dan 72–75°C selama 30 detik), diikuti dengan pembekuan dan uji siklus freeze–thaw selama tiga kali, pengujian dengan campuran bahan lain, serta pengujian vacuum-sealing terhadap stabilitas sensoris selama penyimpanan beku. Parameter yang diamati meliputi warna, aroma, dan rasa berdasarkan uji sensori sederhana. Hasil menunjukkan bahwa pasteurisasi efektif memperpanjang umur simpan tanpa mengubah karakteristik sensoris secara signifikan. Perlakuan optimal diperoleh pada suhu 72–75°C selama 30 detik karena mampu mempertahankan kualitas sensori. Kombinasi pasteurisasi dan pembekuan memperpanjang umur simpan MCW hingga lebih dari 10 hari dalam kondisi beku dengan kestabilan sensori yang baik, sedangkan vacuum-sealing menjaga kualitas produk hingga 30 hari dengan meminimalkan oksidasi dan perubahan warna. Temuan ini menunjukkan bahwa metode sederhana tersebut berpotensi diterapkan pada skala rumah tangga dan UMKM untuk pemanfaatan limbah air kelapa tua secara berkelanjutan dan bernilai ekonomis dengan prinsip zero waste.
References
Aberoumand, A., & Baesi, F. (2020). Effects of vacuum packaging in freezer on oxidative spoilage indexes of fish Lethrinus atkinsoni. Food Science & Nutrition, 8(8), 4145–4150. https://doi.org/10.1002/FSN3.1704
Adubofuor, J., Amoah, I., & Osei-Bonsu, I. (2016). Sensory and Physicochemical Properties of Pasteurized Coconut water from Two Varieties of Coconut. Food Science and Quality Management, 54(0), 26–32. Retrieved from https://iiste.org/Journals/index.php/FSQM/article/view/32478
Ariyaprakai, S. (2022). Freeze Thaw Stability and Heat Stability of Coconut Oil-in-Water Emulsions and Coconut Milk Emulsions Stabilized by Enzyme-Modified Soy Lecithin. Food Biophysics, 17, 557–567. https://doi.org/10.1007/s11483-021-09711-w
Azra, J. M., Setiawan, B., Nasution, Z., Sulaeman, A., & Estuningsih, S. (2023). Nutritional Content and Benefits of Coconut water for the Diabetes Metabolism: a Narrative Review. Amerta Nutrition, 7(2), 317–325. https://doi.org/10.20473/AMNT.V7I2.2023.317-325
Basak, S., Jha, T., & Chakraborty, S. (2023). Pasteurization of tender coconut water by pulsed light treatment: Microbial safety, enzymatic inactivation, and impact on physicochemical properties. Innovative Food Science & Emerging Technologies, 84, 103302. https://doi.org/10.1016/J.IFSET.2023.103302
Bulhões Bezerra Cavalcante, T. A., Santos Funcia, E. dos, & Wilhelms Gut, J. A. (2021). Inactivation of polyphenol oxidase by microwave and conventional heating: Investigation of thermal and non-thermal effects of focused microwaves. Food Chemistry, 340, 127911. https://doi.org/10.1016/J.FOODCHEM.2020.127911
Chantakun, K., Nilsuwan, K., Sumpavapol, P., Huda, N., & Benjakul, S. (2022). Effect of ultraviolet-C radiation and pasteurization on quality and shelf life of refrigerated tender coconut water fortified with edible bird’s nest protein hydrolysate. Journal of Food Processing and Preservation, 46(10), e16870. https://doi.org/10.1111/JFPP.16870
Chourio, A. M., Salais-Fierro, F., Mehmood, Z., Martinez-Monteagudo, S. I., & Saldaña, M. D. A. (2018). Inactivation of peroxidase and polyphenoloxidase in coconut water using pressure-assisted thermal processing. Innovative Food Science & Emerging Technologies, 49, 41–50. https://doi.org/10.1016/J.IFSET.2018.07.014
Dawson, P., Al-Jeddawi, W., & Rieck, J. (2020). The Effect of Different Freezing Rates and Long-Term Storage Temperatures on the Stability of Sliced Peaches. International Journal of Food Science, 2020(1), 9178583. https://doi.org/10.1155/2020/9178583
Detudom, R., Deetae, P., Wei, H., Boran, H., Chen, S., Siriamornpun, S., & Prakitchaiwattana, C. (2023). Dynamic Changes in Physicochemical and Microbiological Qualities of Coconut water during Postharvest Storage under Different Conditions. Horticulturae, 9(12), 1284. https://doi.org/10.3390/HORTICULTURAE9121284/S1
Giavoni, M., Villanueva-Suárez, M. J., Peña-Armada, R. D. la, Garcia-Alonso, A., & Mateos-Aparicio, I. (2022). Pasteurization Modifies the Sensorial Attributes and Nutritional Profile of Orange Pulp By-Product. Foods 2022, Vol. 11, Page 1973, 11(13), 1973. https://doi.org/10.3390/FOODS11131973
Grover, Y., & Negi, P. S. (2023). Recent developments in freezing of fruits and vegetables: Striving for controlled ice nucleation and crystallization with enhanced freezing rates. Journal of Food Science, 88(12), 4799–4826. https://doi.org/10.1111/1750-3841.16810
Gunathilake, K. D. P. P., & Rathnayake, R. M. C. N. (2012). Optimum Physico-Chemical and Processing Parameters for the Preservation of King Coconut water. CORD, 28(1), 1–8. https://doi.org/10.37833/CORD.V28I1.104
Hasnawati, Sutiharni, Deswarni, D., Jasiah, & Febrina, W. (2023). Pemanfaatan limbah air kelapa untuk industri kecil di Pedesaan. Masyarakat Berdaya Dan Inovasi, 4(2), 160–168. https://doi.org/10.33292/MAYADANI.V4I2.116
Ivaškė, A., Jakubovskis, R., Boris, R., & Urbonavičius, J. (2024). Effects of Low Temperature, Freeze–thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete. Materials 2024, Vol. 17, Page 5797, 17(23), 5797. https://doi.org/10.3390/MA17235797
Jayawardena, J. A. E. C., Vanniarachchy, M. P. G., & Wansapala, M. A. J. (2020). Progressive Freeze Concentration of Coconut water and Use of Partial Ice Melting Method for Yield Improvement. International Journal of Food Science, 2020(1), 4292013. https://doi.org/10.1155/2020/4292013
Jusoh, M., Mohamed Nor, N. N., & Yamani Zakaria, Z. (2014). Progressive Freeze Concentration of Coconut water. Jurnal Teknologi (Sciences & Engineering), 67(2), 45–49. https://doi.org/10.11113/JT.V67.2734
Kaale, L. D., Eikevik, T. M., Bardal, T., & Kjorsvik, E. (2013). A study of the ice crystals in vacuum-packed salmon fillets (Salmon salar) during superchilling process and following storage. Journal of Food Engineering, 115(1), 20–25. https://doi.org/10.1016/J.JFOODENG.2012.09.014
Kailaku, S. I., Setiawan, B., & Sulaeman, A. (2017). The Shelf Life Estimation of Cold Sterilized Coconut water. PLANTA TROPIKA, 5(1), 62–69. https://doi.org/10.18196/PT.2017.072.62-69
Kan, J., Wang, Y., Song, F., Zhang, J., & Zhang, Y. (2023). Effect of Frozen Periods on Volatile Flavor Compounds of Coconut water Based on GC-IMS and Chemometrics Analysis. Science and Technology of Food Industry, 44(19), 329–335. https://doi.org/10.13386/J.ISSN1002-0306.2022110273
Kanjanapongkul, K., & Baibua, V. (2021). Effects of ohmic pasteurization of coconut water on polyphenol oxidase and peroxidase inactivation and pink discoloration prevention. Journal of Food Engineering, 292, 110268. https://doi.org/10.1016/J.JFOODENG.2020.110268
Li, T., Kuang, S., Xiao, T., Hu, L., Nie, P., Ramaswamy, H. S., & Yu, Y. (2022). The Effect of Pressure–Shift Freezing versus Air Freezing and Liquid Immersion on the Quality of Frozen Fish during Storage. Foods 2022, Vol. 11, Page 1842, 11(13), 1842. https://doi.org/10.3390/FOODS11131842
Lou, Z., Xu, H., Xia, L., Lin, W., Dai, Z., & Wang, X. (2023). Enhanced freeze-thaw cycles facilitate the antibiotic resistance proliferation and dissemination risk under global climate change. Process Safety and Environmental Protection, 175, 119–128. https://doi.org/10.1016/J.PSEP.2023.04.048
Ma, F., Wang, W. Y., Wang, W., Cai, K. Z., Shang, Y. F., Chen, C. G., & Xu, B. C. (2020). Effects of water-immersion cooling temperatures on the moisture retention of sodium-reduced pork sausages. Journal of Food Science and Technology, 57(7), 2516–2523. https://doi.org/10.1007/S13197-020-04287-8/METRICS
Ma, Y., Xu, L., Wang, S., Xu, Z., Liao, X., & Cheng, Y. (2019). Comparison of the quality attributes of coconut waters by high-pressure processing and high-temperature short time during the refrigerated storage. Food Science & Nutrition, 7(4), 1512–1519. https://doi.org/10.1002/FSN3.997
Pandiselvam, R., Prithviraj, V., Manikantan, M. R., Beegum, P. P. S., Ramesh, S. V., Kothakota, A., … Socol, C. T. (2022). Dynamics of biochemical attributes and enzymatic activities of pasteurized and bio-preserved tender coconut water during storage. Frontiers in Nutrition, 9, 977655. https://doi.org/10.3389/FNUT.2022.977655/BIBTEX
Park, M. H., & Kim, M. (2024). Effects of Thawing Conditions on the Physicochemical and Microbiological Quality of Thawed Beef. Preventive Nutrition and Food Science, 29(1), 80–86. https://doi.org/10.3746/PNF.2024.29.1.80
Pérez-Bermúdez, I., Castillo-Suero, A., Cortés-Inostroza, A., Jeldrez, C., Dantas, A., Hernández, E., … Petzold, G. (2023). Observation and Measurement of Ice Morphology in Foods: A Review. Foods 2023, Vol. 12, Page 3987, 12(21), 3987. https://doi.org/10.3390/FOODS12213987
Petruzzi, L., Campaniello, D., Speranza, B., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Comprehensive Reviews in Food Science and Food Safety, 16(4), 668–691. https://doi.org/10.1111/1541-4337.12270
Poça D’Água, A. Z., Silva, P. A. da, Oliveira, A. L. de, & Petrus, R. R. (2024). Enzymic Deactivation in Tender Coconut water by Supercritical Carbon Dioxide. Processes 2024, Vol. 12, Page 1071, 12(6), 1071. https://doi.org/10.3390/PR12061071
Rafsanjani, N. D., Daneshi, M., & Shakerardekani, A. (2018). Effect of Freezing and Vacuum Packaging on Quality Properties of Pistachio Powder During Storage. Journal of Nuts, 9(2), 169. https://doi.org/10.22034/JON.2018.542998
Sanganamoni, S., Mallesh, S., Vandana, K., & Srinivasa Rao, P. (2017). Thermal Treatment of Tender Coconut water – Enzyme Inactivation and Biochemical Characterization. International Journal of Current Microbiology and Applied Sciences, 6(5), 2919–2931. https://doi.org/10.20546/IJCMAS.2017.605.331
Shi, S., Wang, W., Wang, F., Yang, P., Yang, H., He, X., & Liao, X. (2025). Research Progress in Coconut water: A Review of Nutritional Composition, Biological Activities, and Novel Processing Technologies. Foods 2025, Vol. 14, Page 1503, 14(9), 1503. https://doi.org/10.3390/FOODS14091503
Sospeter, E., Ding, P., Fang, T. H., Misran, A., & Abas, F. (2025). Long-term frozen storage affects the volatile compound profile, physicochemical and antioxidant content of vacuum-packed Musang King durian fruit. Journal of Food Science, 90(3), e70118. https://doi.org/10.1111/1750-3841.70118
Syahfitri, T., Susanti, S. N., Fajriansyah, M., Suhardian, F., Juliana, A., & Karlinda Sari, D. (2022). PEMANFAATAN AIR KELAPA UNTUK PEMBUATAN KECAP TERHADAP PENINGKATAN PEREKONOMIAN MASYARAKAT DESA MUMPA PASCA COVID-19. Selodang Mayang: Jurnal Ilmiah Badan Perencanaan Pembangunan Daerah Kabupaten Indragiri Hilir, 8(3), 224–230. https://doi.org/https://doi.org/10.47521/selodangmayang.v8i3.267
Tan, T. C., Cheng, L. H., Bhat, R., Rusul, G., & Easa, A. M. (2014). Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut. Food Chemistry, 142, 121–128. https://doi.org/10.1016/J.FOODCHEM.2013.07.040
Wagoner, M. P., Reyes, T. M., Zorn, V. E., Coursen, M. M., Corbitt, K. E., Wilborn, B. S., … Sawyer, J. T. (2022). Vacuum Packaging Maintains Fresh Characteristics of Previously Frozen Beef Steaks during Simulated Retail Display. Foods 2022, Vol. 11, Page 3012, 11(19), 3012. https://doi.org/10.3390/FOODS11193012
Winarno, F. Gregorius. (2015). Kelapa pohon kehidupan. Gramedia Pustaka Utama. Retrieved from https://books.google.com/books/about/Kelapa_Pohon_Kehidupan.html?hl=id&id=uLY8DwAAQBAJ
Wu, Z., Ma, W., Xian, Z., Liu, Q., Hui, A., & Zhang, W. (2021). The impact of quick-freezing methods on the quality, moisture distribution and microstructure of prepared ground pork during storage duration. Ultrasonics Sonochemistry, 78, 105707. https://doi.org/10.1016/J.ULTSONCH.2021.105707
Wurlitzer, N. J., Dionísio, A. P., Lima, J. R., Garruti, D. dos S., Silva Araújo, I. M. da, da Rocha, R. F. J., & Maia, J. L. (2019). Tropical fruit juice: effect of thermal treatment and storage time on sensory and functional properties. Journal of Food Science and Technology, 56(12), 5184. https://doi.org/10.1007/S13197-019-03987-0
Yewle, N. R., Stroshine, R. L., Ambrose, R. P. K., & Baributsa, D. (2024). Hermetic Bags: A Short-Term Solution to Preserve High-Moisture Maize during Grain Drying. Foods, 13(5), 760. https://doi.org/10.3390/FOODS13050760/S1
Zahra Al Banna, N., Ilmiyah, N., & Khairunnisa. (2023). Pemanfaatan Limbah Air Kelapa Tua Sebagai Zat Pengatur Tumbuh Alami Pertumbuhan Sawi (Brassica juncea L.). Al Kawnu : Science and Local Wisdom Journal, 3(1), 11–20. https://doi.org/10.18592/AK.V3I1.8826
Zhu, L., Liang, X., Lu, Y., Tian, S., Chen, J., Lin, F., & Fang, S. (2021). Effect of freeze-thaw cycles on juice properties, volatile compounds and hot-air drying kinetics of blueberry. Foods, 10(10), 2362. https://doi.org/10.3390/FOODS10102362/S1
Zia, H., Slatnar, A., Košmerl, T., & Korošec, M. (2024). A review study on the effects of thermal and non-thermal processing techniques on the sensory properties of fruit juices and beverages. Frontiers in Food Science and Technology, 4, 1405384. https://doi.org/10.3389/FRFST.2024.1405384/FULL
Jurnal Pertanian Cemara allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles and allow readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions.
In most cases, appropriate attribution can be provided by simply citing the original article, for example:
Fatmawati, Ika dan Wahyudi, Didik (2015). POTENSI RUMPUT LAUT DI KABUPATEN SUMENEP. JURNAL PERTANIAN CEMARA, 12(1), 1-18. doi:https://doi.org/10.24929/fp.v12i1.193

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






.png)

3.png)
