INTERAKSI IBA DAN IAA TERHADAP JUMLAH DAUN DAN BERAT KERING TANAMAN PISANG CAVENDISH (Musa acuminata) PERIODE SECONDARY HARDENING

  • Hilda Adina Rahmi UPN Veteran Jawa Timur
  • Nora Augustien Universitas Pembangunan Nasional ”Veteran”
  • Nova Triani Universitas Pembangunan Nasional ”Veteran”
Keywords: cavendish, IBA, IAA, Leaf Count, Dry Weight

Abstract

One of the stages in tissue culture activities at the final stage is the acclimatization stage. Leaves are plant organs that are important in the formation of photosynthesis which will become energy to meet the needs of plant growth activities. The large number of leaves formed during the plant growth period has an influence on the formation of plant energy, one form of measuring plant development from plant biomass can be in the form of plant dry weight. Growth and development in plants is closely related to hormones. This study aimed to examine the interaction between PGR IAA and IBA on the growth of Cavendish banana (Musa acuminata) during the secondary hardening period. The research was conducted at the Screen House of the Faculty of Agriculture, UPN “Veteran”, East Java. The research method used was a factorial completely randomized design. There are two factors consisting of 16 treatments. The first factor is the growth regulator IBA with a concentration consisting of I1 (Control); I2 (0.5 mg/l); I3(1.0 mg/l); I4 (1.5 mg/l). The second factor is the concentration of IAA growth regulators consisted of I1 (Control); I2 (0.5 mg/l); I3(1.0 mg/l); I4 (1.5 mg/l). The effect of treatment using the BNT test level 5%. The results showed an interaction between the concentration levels of IBA and IAA number of leaves and dry weight of Cavendish bananas in the secondary setting period. Treatment I4A4 (1.5 ml IBA + 1.5 ml IAA) gave the best results on the number of plant leaves by 75.8% at the end of the observation. Treatment I4A3 (1.5 ml IBA + 1.0 ml IAA) gave the heaviest yield on plant weight of 43.1% at the end of the observation.

References

Edison, HS., Susanto A., Hermanto, C. (1996). The exploration of Musacea, 18 November – 14 December 1996. Travel Report. (travel report available fro, Biodervisity International) Research Institute for Fruits.
Elisama, M. M., Raymundo, E. V., Vicente, V., Virginia, C.-ángelesgisela, Luis, C., Nacional, C.-I. P., Hornos, U. O., & Xoxocotlán, S. C. (2013). Acclimatization of micropropagated Musa cavendischii cultivar roatan plants submitted to doses of fertigation and auxin. African Journal of Agricultural Research, 8(43), 5335–5340. https://doi.org/10.5897/AJAR12.788
George, E. F., Hall, M. A., & Klerk, G. J. De. (2008). Plant propagation by tissue culture 3rd edition. Plant Propagation by Tissue Culture 3rd Edition, 1, 1–501. https://doi.org/10.1007/978-1-4020-5005-3
Hasnunidah, N. (2018). Fisiologi Tumbuhan. Universitas Lampung.
Hazarika, B. N., da Silva, J. A. T., & Talukdar, A. (2006). Effective Acclimatization of in Vitro Cultured Plants: Methods, Physiology and Genetics. Floriculture, Ornamental and Plant Biotechnology, 2(December 2006), 427–438. https://www.researchgate.net/publication/283300426
Hoffmann, A. (2002). aclimatacao de mudas produzidas. Informe Agropecuario, 23, 21–24.
Khatun, F., Hoque, M., Huq, H., Adil, M., Ashraf-Uz-Zaman, K., & Rabin, M. (2017). Effect of BAP and IBA on in vitro Regeneration of Local Banana Variety of Sabri. Biotechnology Journal International, 18(1), 1–10. https://doi.org/10.9734/bji/2017/31592
Kumari, S. M. P., Saravanan, S., & Pillai, M. A. (2020). In vitro Propagation of Medicinally Valuable Traditional Banana Cultivar, Musa acuminata cv. Matti by Shoot Tip Culture. International Journal of Current Microbiology and Applied Sciences, 9(8), 2240–2250. https://doi.org/10.20546/ijcmas.2020.908.257
Lohidas, J., & Sujin, D. (2015). Effect of Growth Hormones in the Micropropagation of Banana Cv. Matti. 15(1), 307–314.
Mahouachi, J., López-Climent, M. F., & Gómez-Cadenas, A. (2014). Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. Scientific World Journal, 2014. https://doi.org/10.1155/2014/540962
Mano, Y., & Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 63(8), 2853–2872. https://doi.org/10.1093/jxb/ers091
Mathur, A., Mathur, A. K., Verma, P., Yadav, S., Lal Gupta, M., & Darokar, M. P. (2008). Biological hardening and genetic fidelity testing of micro-cloned progeny of Chlorophytum borivilianum Sant. et Fernand. African Journal of Biotechnology, 7(8), 1046–1053. https://doi.org/10.4314/ajb.v7i8.58601
Mugoya, C., et al. (2013). Tissue culture conservation biotechnology and seed systems.pdf (M. J. . Omondi (Ed.)). Agricultural Research in East and Central Africa.
Muniroh, S., Harjoko, D., & Sumiyati. (2015). Kombinasi Jenis Pasir dengan Serat Batang Aren serta Pengaruhnya terhadap Pertumbuhan dan Hasil Tomat secara Hidroponik Substrat Combination of Sand Types with Arenga Wood Fiber on Tomato ’ s Growth and Yield by Substrate Hydroponically. Agrosains, 17(1), 14–20.
Nikmah, Z. C., Slamet, W., & Kristanto, B. A. (2017). Aplikasi silika dan NAA terhadap pertumbuhan Anggrek Bulan (Phalaenopsis amabilis l.) pada tahap aklimatisasi. Journal of Agro Complex, 1(3), 101. https://doi.org/10.14710/joac.1.3.101-110
Parnidi, & Setyo-Budi, U. (2016). Keragaan Klon-Klon Abaca (Musa textilis Nee) Hasil Kultur in-Vitro pada Fase Aklimatisasi. Seminar Nasional Pendidikan Dan Saintek 2016, 2016, 46–52.
Pinheiro, C., António, C., Ortuño, M. F., Dobrev, P. I., Hartung, W., Thomas-Oates, J., Ricardo, C. P., Vanková, R., Chaves, M. M., & Wilson, J. C. (2011). Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: Metabolic reorganization prior to early stress responses. Journal of Experimental Botany, 62(14), 4965–4974. https://doi.org/10.1093/jxb/err194
Pospíšilov , J., S nková, H., Haisel, D., Semorádová, . (2007). Acclimation of plantlets to Ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid (a Review). Acta Horticulturae, 748, 29–38. https://doi.org/10.17660/actahortic.2007.748.2
Pospíšilová, J., Tichá, I., Ek, P. K. Č., Haisel, D. (1999). Pospisilova et al 1999 ex vitro acclim_review. 42(96), 481–497.
Rajesh, P. (2013). Histological and Biochemical Changes in Aegle marmelos Corr. before and after Acclimatization. Tree Genetics and Molecular Breeding, January 2013. https://doi.org/10.5376/tgmb.2013.04.0003
Rozyandra, C. (2004). Analisis Keanekaragaman Pisang (Musa spp.) Asal Lampung.
Sahoo, J. P. (2020). Plant Growth Regulators and their Mode of Action Plant Growth Regulators and their Mode of Action. Agrifood Magazine, July, 1–3. https://doi.org/10.13140/RG.2.2.17424.53767
Scaranari, C., Leal, P. A. M., & Mazzafera, P. (2009). Shading and periods of acclimatization of micropropagated banana plantlets cv. Grande Naine. Scientia Agricola, 66(3), 331–337. https://doi.org/10.1590/s0103-90162009000300008
STILES, W. (1946). Plant physiology. In Science progress (Vol. 34, Issue 136). https://doi.org/10.1017/9781108486392
Uzaribara, E., Ansar, H., Nachegowda, V., Taj, A., & Sathyanarayana, B. N. (2015). Acclimatization of in Vitro Propagated Red Banana ( Musa Acuminata ) Plantlets. The Bioscan, 10(1), 221–224.
Vasane, S. R., & Kothari, R. M. (2006). Optimization of secondary hardening process of banana plantlets (Musa paradisiaca L. var. grand nain). Indian Journal of Biotechnology, 5(3), 394–399.
Vasane, S. R., & Kothari, R. M. (2008). An integrated approach to primary and secondary hardening of banana var. Grand Naine. Indian Journal of Biotechnology, 7(2), 240–245.
Wong, K. F., Suhaimi, O., & Fatimah, K. (2017). On-farm grower-friendly nursery technique for acclimatization of tissue-cultured banana seedlings. Asian Journal for Poverty Studies, 3(2), 146–151.
Published
2021-09-13
Abstract viewed = 0 times
PDF downloaded = 0 times