PERBANDINGAN PERFORMA MODEL MACHINE LEARNING SUPPORT VECTOR MACHINE, NEURAL NETWORK, DAN K-NEAREST NEIGHBORS DALAM PREDIKSI HARGA SAHAM

  • Sudriyanto Sudriyanto Universitas Nurul Jadid
  • Fatimatus Syahro
  • Novi Fitriani
Keywords: Predicting Stock Prices, Machine Learning, Support Vector Machine, Neural Network, K-Nearest Neighbors

Abstract

This study aims to analyze the performance of three prediction models, namely K-Nearest Neighbors (K-NN), Neural Network (NN), and Support Vector Machine (SVM), in predicting the stock price of PT Astra International Tbk (ASII.JK). The research encompasses the initial stages through evaluation using optimal parameters for these three algorithms. The research findings reveal that the K-NN prediction model has the lowest Root Mean Square Error (RMSE) value, with a value of 0.037, indicating the most accurate prediction compared to the other models. Despite the NN model having an RMSE of 0.048, which is higher than K-NN, it still provides reasonably accurate predictions. Meanwhile, the SVM model has an RMSE of 0.075, indicating a higher level of error in its predictions. Based on these results, the recommendation is to utilize the K-NN model as the preferred choice for predicting the ASII.JK stock price.

References

[1] R. Agustina, “Analisis Fundamental, Acuan Investasi Saham Jangka Panjang,” DINAMIS: Jurnal Pengabdian Kepada Masyarakat, vol. 1, no. 1, 2021, doi: 10.33752/dinamis.v1i1.360.
[2] Muhamad Aldin Hidayat, “Analisis Teknikal Pergerakan Harga Saham dengan Indikator Candlestick, Moving Average, dan Stochastic Oscillator,” Jurnal Riset Manajemen dan Bisnis, 2022, doi: 10.29313/jrmb.v2i1.906.
[3] M. H. Lee, S. Kim, H. Kim, and J. Lee, “Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph,” Technol Forecast Soc Change, vol. 180, 2022, doi: 10.1016/j.techfore.2022.121718.
[4] I. K. A. Enriko, F. N. Gustiyana, and R. H. Putra, “Komparasi Hasil Optimasi Pada Prediksi Harga Saham PT. Telkom Indonesia Menggunakan Algoritma Long Short Term Memory,” Jurnal Media Informatika Budidarma, vol. 7, no. 2, 2023.
[5] F. Sembiring et al., “Komparasi Pergerakan Saham Apple Dan Samsung Menggunakan Algoritma Support Vector Machine ( SVM ),” Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 1, 2023.
[6] O. Aprilia and W. M. Daryanto, “Analysis Financial Performance of PT Astra International Tbk Before and After Economy Crisis in 2020,” International Journal of Business, Economics and Law, vol. 24, no. 2, 2021.
[7] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, 2021, doi: 10.1007/s12525-021-00475-2.
[8] A. O. Indarso and A. B. Pangaribuan, “Penggunaan Metode Multilayer Perceptron Pada Prediksi Indeks Saham LQ45,” Informatik : Jurnal Ilmu Komputer, vol. 17, no. 1, 2021, doi: 10.52958/iftk.v17i1.2225.
[9] G. Budiprasetyo, M. Hani’ah, and D. Z. Aflah, “Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM),” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 8, no. 3, 2023, doi: 10.25077/teknosi.v8i3.2022.164-172.
[10] K. M. Hindrayani, I. Diyasa, P. Aji, and T. Maulana, “Studi Literatur Mengenai Prediksi Harga Saham Menggunakan Machine Learning,” Prosiding Seminar, vol. 1, 2020.
[11] R. Rizaldi and M. Ainun Rofiq Hariri, “Implementasi Particle Swarm Optimization (PSO) untuk Optimisasi Algoritma Naive Bayes dalam Memprediksi Mahasiswa Lulus Tepat Waktu,” vol. 2, no. 1, 2021, [Online]. Available: https://ejournal.unuja.ac.id/index.php/core
[12] R. Hidayad, R. A. Ronaldo, R. A. Prasetiyo, and S. A. Edho Wicaksono, “Optimasi Parameter Support Vector Machine Menggunakan Algoritma Genetika untuk Meningkatkan Prediksi Pergerakan Harga Saham,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 3, no. 1, 2022, doi: 10.33650/coreai.v3i1.3859.
[13] M. Abdul Dwiyanto Suyudi, E. C. Djamal, A. Maspupah Jurusan Informatika, and F. Sains dan Informatika Universitas Jenderal Achmad Yani Cimahi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” 2019.
[14] P. Cunningham and S. J. Delany, “K-Nearest Neighbour Classifiers-A Tutorial,” ACM Computing Surveys, vol. 54, no. 6. 2021. doi: 10.1145/3459665.
Published
2023-12-08
Abstract viewed = 32 times
Full text downloaded = 28 times