PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA DECISION TREE C4.5 UNTUK MEMPREDIKSI MAHASISWA DROP OUT DI UNIVERSITAS WIRARAJA

  • Iddrus Iddrus
  • Dewi Wulan Sari

Abstract

Education providers are required to be able to provide good educational services and quality education to each student. Service and quality of education are provided to ensure students succeed in their academics. However, academic failures still occur in some students at various existing universities. One example of academic failure that often occurs is Drop Out (DO). DO is a condition where students are unable to complete their studies during the study period that has been given. DO is a big loss for students and education providers. By utilizing data mining, students should be able to predict from the start who are likely to experience dropouts. Based on these problems, a study was conducted to predict the probability of students dropping out using the Decision Tree algorithm C4.5 model. The test results obtained in this study are accuracy.

References

Kemenristekdikti. (2015). Standar Nasional Pendidikan Tinggi. Peraturan Menteri Riset, Teknologi, Dan Pendidikan Tinggi Republik Indonesia Nomor 44 Tahun 2015 Tentang.
Han, J., Pei, J. and Kamber, M., (2011). Data Mining: Concepts And Techniques. Third Edition, Elsevier, USA.
Ridwan, M., Suyono, H. and Sarosa, M. (2013). Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. ECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems). 7(1).59-64.
E. Pramadani, H. Sunandar, and Y. Hasan. (2018). Implementasi Data Mining Penjualan Koran Dengan Metode C4.5 ( STUDI KASUS : PT . Media Massa Cahaya). 6(1).11–15.
A. W. Wardhana, E. Patimah, A. I. Shafarindu, Y. M. Siahaan, B. V. Haekal, and D. S. Prasvita. (2021). Klasifikasi Data Penjualan pada Supermarket dengan Metode Decision Tree. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (Senamika).2(1), 660-667.
Iddrus and Junaedi, H. (2022) .Prediksi Kelulusan Mahasiswa Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. SMARTICS Journal. Malang, Jawa Timur, Indonesia. 8(1).1–7.
Dewi, K. R., Mauladi, K.F., Masruroh. (2020). Analisa Algoritma C4.5 untuk Prediksi Penjualan Obat Pertanian di Toko Dewi Sri”. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi). 4(3). 109-114.
Siahaan, N. V. B., Poningsih, P., Suhendro, D., Hartama, D., & Suhada, S. (2022). Penerapan Data Mining Algoritma C4.5 Terhadap Prediksi Faktor Menurunnya Hasil Panen Padi. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 7(1), 27.
Anwar, F. F., Jaya, A. I., & Abu, M. (2022). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dengan Penerapan Algoritma C4.5. Jurnal Ilmiah Matematika Dan Terapan, 19(1), 19–28.
Sunanto, N., & Falah, G. (2022). Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 208–2
Published
2023-06-29
Abstract viewed = 4 times
Full text (Bahasa Indonesia) downloaded = 3 times