# ANALISA KERUSAKKAN JALAN MENGGUNAKAN METODE BINA MARGA – IRIMETER 2 PADA RUAS JALAN HAMADI – ENTROP KELAPA DUA KOTA JAYAPURA

# Roni Teguh Hanura Sinaga

Program Magister Teknik Sipil Fakultas Teknik Universitas Cenderawasih Jayapura, roni.ths@hotmail.co.id

#### **ABSTRAK**

International Roughness Index (IRI) adalah parameter yang digunakan untuk menentukan tingkat ketidakrataan permukaan jalan dalam satuan m/km. Parameter mengukur ini tingkat ketidakrataan permukaan jalan yang dipresentasikan dalam suatu skala nilai yang dapat tingkat kerusakan lapis permukaan jalan vang dirasakan pengendara. Pada penelitian ini diketahui persentase kondisi ketidakrataan vang perlu ditangani sepanjang ruas Jalan Hamadi Entrop Kelapa Dua (STA.034+300 - STA.039+300) sebesar 82% kondisi baik dengan Saran penanganan pemeliharaan rutin, sebesar 18% kondisi sedang dengan Saran pemeliharaan berkala. penanganan ini mengidentifikasi dan Penelitian memberikan saran terkait penanganan yang tepat berdasarkan skala nilai IRI.

# Kata Kunci: IRIMeter2, Roughness Index, Metode Bina Marga

# **ABSTRACT**

The International Roughness Index (IRI) is a parameter used to determine the level of unevenness of a road surface in units of m/km. This parameter measures the level of unevenness of the road surface presented in a scale of values that can be the level of

damage to the road surface layer felt by the driver. In this study, it is known that the percentage of unevenness conditions that need to be addressed along the Hamadi -Entrop Kelapa Dua Road section (STA.034 + 300 - STA.039 + 300) is 82% good condition with routine maintenance handling suggestions, 18% moderate condition with periodic maintenance handling suggestions. This research and identifies provides suggestions regarding appropriate handling based on the IRI value scale.

# **Keyword : IRIMeter2, Roughness Index, Bina Marga Method.**

# 1. PENDAHULUAN

Transportasi Jalan ialah segala bentuk dari transportasi menggunakan jalan untuk mengangkut penumpang atau Diawal ditemukannya barang. dari transportasi jalan modern, kuda, kedelai atau bahkan manusia membawa barang melewati jalan setapak. Seiring dengan metode perkerasan penemuan menggunakan media aspal, transportasi sendiri memiliki standar yang ditetapkan untuk meningkatkan kualitas pengguna ialan.

Ruas jalan Hamadi – Entrop kelapa dua Kota Jayapura merupakan salah satu ruas jalan yang cukup padat dan tidak terjadi kemacetan. Hal disebabkan ruas jalan Ruas jalan Hamadi – Entrop kelapa dua Kota Jayapura merupakan jalan utama yang melalui kawasan pusat perbelanjaan, perkantoran, sekolah. yang mengakibatkan banyaknya aktivitas di badan jalan seperti pejalan kaki. kendaraan berhenti. kendaraan parkir,kendaraan lambat, dan kendaraan masuk/keluar dari sisi jalan. Oleh karena itu, pemerintah mengambil kebijakan untuk mengadakan Paket preservasi jalan disepanjang Ruas jalan Hamadi – Entrop kelapa dua Kota Jayapura. Rasa nyaman dalam berkendara dijalan dipengaruhi oleh

tingkatan ketidakrataan permukaan jalan (Road Roughness), sehingga dilakukan pemeriksaan kondisi jalan secara teratur. Pengecekan itu dimaksudkan untuk mengukur ketidakrataan permukaan jalan maupun kelayakan jalur yang biasa digunakan dalam program perencanaan, pemeliharaan ataupun peningkatan jalur. Ketidakrataan jalur (Road Roughness) ialah patokan situasi yang sangat banyak dipakai dalam menilai perkerasan jalan. Untuk mengetahui apakah suatu jalan pemeliharaan memerlukan ataupun peningkatan maka perlu diketahui besarnya nilai tingkat ketidakrataan permukaan jalan sering disebut **International** Roughness Index (IRI) dari jalan tersebut.

# 1.1 Rumusan Masalah

Penulis tertarik untuk mengevaluasi kerusakkan jalan pada ruas Hamadi - Entrop Kelapa Dua (STA.034+300 - STA.039+300) untuk mendapatkan penilaian penanganan yang tepat dengan menggunakan Metode IRI (*International Roughness Index*). Nilai IRI didapatkan dengan menggunakan alat *Roughometer-2* sesuai rekomendasi Direktorat Jenderal Bina Marga Kementeria Pekerjaan Umum dan Perumahan Rakyat, yaitu:

- a. Penilaian kondisi kerusakkan jalan pada ruas Hamadi Entrop Kelapa Dua (STA.034+300 STA.039+300) dengan menggunakan Metode IRI
- Jenis penanganan yang sesuai dengan kerusakkan perkerasan jalan Hamadi – Entrop Kelapa Dua pada (STA.034+300 - STA.039+300)

# 1.2 Tujuan Penulisan

Adapun tujuan penelitian ini adalah untuk mengetahui: Berapa penilaian kondisi kerusakkan jalan pada ruas Hamadi - Entrop Kelapa Dua (STA.034+300 - STA.039+300) dengan menggunakan Metode IRI dan apa jenis penanganan yang sesuai dengan kerusakkan perkerasan jalan

Hamadi – Entrop Kelapa Dua pada (STA.034+300 - STA.039+300)

# 1.3 Urgensi Penelitian

Secara teoritis nilai urgensi penelitian ini adalah secara spesifik sebagai berikut :

- 1. Memberikan alternatif solusi perbaikan menyangkut konstruksi pada ruas Jalan Hamadi-Entrop Kelapa Dua sehingga dapat memperlancar arus lalu lintas dan meningkatkan kenyamanan serta keamanan para pemakai jalan.
- 2. Melakukan penelitian menambah pengalaman dan wawasan dalam pemeliharaan jalan.Dua (STA. 034+300 STA. 039+300).

#### 2. METODE PENELITIAN

International Roughness Index (IRI) adalah parameter yang digunakan untuk menentukan tingkat ketidakrataan permukaan jalan. Parameter Roughness dipresentasikan dalam suatu skala yang menggambarkan ketidakrataan permukaan perkerasan ialan dirasakan yang pengendara. Ketidakrataan permukaan perkerasan jalan tersebut merupakan fungsi dari potongan memanjang dan melintang permukaan jalan. Disamping faktor-faktor tersebut, Roughness juga dipengaruhi oleh parameter - parameter operasional kendaraan, yang meliputi suspension roda,

International Roughness Index (IRI) atau Indeks ketidakrataan permukaan jalan international, adalah suatu parameter ukur standar untuk menilai ketidakrataan permukaan jalan yang digunakan secara international.

Perhitungan pengukuran ketidakrataan permukaan jalan dihitung dengan menggunakan model matematis menggunakan alat bantu software aplkasi, yaitu Roadroid. Dimana sebuah perangkat keras dilekatkan pada suspensi kendaraan

dan telah terhubung dengan kendaraan mobil. Secara otomatis aplikasi menghitung ketidakrataan jalan dari jumlah kumulatif turunnya naik permukaan arah profil memanjang dibagi dengan jarak atau panjang permukaan yang akan di ukur. Akumulasi data berwujud ketidakraataan ialan untuk data mendapatkan data nilai IRI keadaan suatu jalan raya yang sesuai dengan ketentuan evaluasi kondisi jalan. Sebelum melakukan perhitungan data, akan lebih bagus apabila di tentukannya garis pertama serta garis terakhir suatu ruas jalan, pengaplikasian dilapangan dilakukan dari garis pertama menuju ke arah garis terakhir. Adapun hasil nya berupa nilai ketidakrataan pada tiap lajur dilihat dari sisi kiri (L1) dan sisi kanan jalan (R1) berupa nilai-nilai yang akan di formulasikan dan memberikan informasi tingkat ketidakrataan permukaan jalan di tiap segmen nya.

Pengakumulasian aplikasi ini aktif menghitung data pada saat mobil melaju

dengan kecepatan rendah biasanya 20-40 km/jam melalui kondisi suatu ruas jalan yang dievaluasi. Deformasi ruas jalan rusak yang dihitung pada penelitian ini per segmen 100 meter. Menurut Sukirman (1999) "dapat diartikan sebagai parameter ketidakrataan yang dihitung dari jumlah kumulatif naik turunnya permukaan arah profil memanjang dibagi jarak/panjang permukaan yang diukur". IRI juga digunakan untuk menggambarkan suatu profil memanjang dari suatu jalan dan digunakan sebagai standar ketidakrataan permukaan jalan. Satuan yang biasa direkomendasikan adalah meter kilometer (m/km) atau milimeter per meter (mm/m)" telah mengembangkan nilai IRI untuk berbagai umur perkerasan dan kecepatan. Untuk ketidakrataan permukaan ialan baru nilai IRI < 4 m/km yang dapat ditempuh pada kecepatan 20-40km/jam dan untuk jalan lama nilai IRI < 6 m/km dengan kecepatan sekitar 20 km/jam.



Gambar 1. Lokasi Penelitian Survei kerusakkan jalan

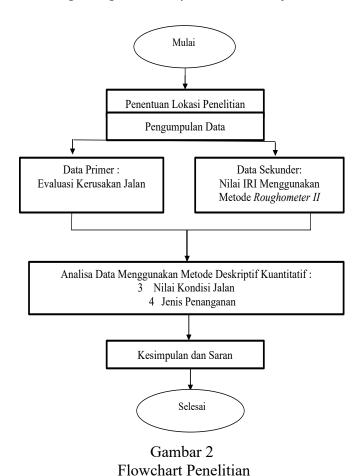
# Pengumpulan Data

Evaluasi International Roughness Index (IRI) kondisi jalan menghasilkan data kerusakan pada perkerasan jalan yang terjadi di setiap ruas jalan. Untuk

mempermudah perhitungan nilai kerusakan maka \_anjang ruas jalan yang akan di evaluasi dibagi menjadi 50 segmen dengan jarak antar segmen 100m

Tabel 1
Hasil pengambilan data menggunakan IriMeter-2
Per Segmentasi Sta.034+300 – 039+300

| No | Stasiun State. |         | Nilai | Kondisi Jalan |
|----|----------------|---------|-------|---------------|
|    | Awal Akhir     |         |       |               |
| 1  | 034+300        | 034+400 | 3.98  | Baik          |
| 2  | 034+400        | 034+500 | 3.98  | Baik          |
| 3  | 034+500        | 034+600 | 4.10  | Rusak Sedang  |
| 4  | 034+600        | 034+700 | 3.87  | Baik          |
| 5  | 034+700        | 034+800 | 4.08  | Rusak Sedang  |
| 6  | 034+800        | 034+900 | 3.87  | Baik          |
| 7  | 034+900        | 035+00  | 3.11  | Baik          |
| 8  | 035+00         | 035+100 | 3.33  | Baik          |
| 9  | 035+100        | 035+200 | 3.54  | Baik          |
| 10 | 035+200        | 035+300 | 3.44  | Baik          |
| 11 | 035+300        | 035+400 | 3.44  | Baik          |
| 12 | 035+400        | 035+500 | 3.33  | Baik          |
| 13 | 035+500        | 035+600 | 3.00  | Baik          |
| 14 | 035+600        | 035+700 | 3.90  | Baik          |
| 15 | 035+700        | 035+800 | 3.20  | Baik          |
| 16 | 035+800        | 035+900 | 3.33  | Baik          |
| 17 | 035+900        | 036+00  | 3.76  | Baik          |
| 18 | 036+00         | 036+100 | 3.98  | Baik          |
| 19 | 036+100        | 036+200 | 3.70  | Baik          |
| 20 | 036+200        | 036+300 | 3.87  | Baik          |
| 21 | 036+300        | 036+400 | 3.76  | Baik          |
| 22 | 036+400        | 036+500 | 3.54  | Baik          |
| 23 | 036+500        | 036+600 | 3.44  | Baik          |
| 24 | 036+600        | 036+700 | 3.33  | Baik          |
| 25 | 036+700        | 036+800 | 3.65  | Baik          |
| 26 | 036+800        | 036+900 | 3.87  | Baik          |
| 27 | 036+900        | 037+00  | 4.00  | Rusak Sedang  |
| 28 | 037+00         | 037+100 | 3.87  | Baik          |
| 29 | 037+100        | 037+200 | 3.98  | Baik          |
| 30 | 037+200        | 037+300 | 3.33  | Baik          |
| 31 | 037+300        | 037+400 | 3.22  | Baik          |
| 32 | 037+400        | 037+500 | 3.54  | Baik          |
| 33 | 037+500        | 037+600 | 3.65  | Baik          |
| 34 | 037+600        | 037+700 | 3.11  | Baik          |
| 35 | 037+700        | 037+800 | 3.10  | Baik          |
| 36 | 037+800        | 037+900 | 3.65  | Baik          |
| 37 | 037+900        | 038+00  | 3.33  | Baik          |
| 38 | 038+00         | 038+100 | 4.19  | Rusak Sedang  |
| 39 | 038+100        | 038+200 | 3.54  | Baik          |
| 40 | 038+200        | 038+300 | 3.11  | Baik          |
| 41 | 038+300        | 038+400 | 3.40  | Baik          |
| 42 | 038+400        | 038+500 | 3.54  | Baik          |


| No | Stas      | siun    | Nilai | Kondisi Jalan |
|----|-----------|---------|-------|---------------|
|    | Awal      | Akhir   |       |               |
| 43 | 038+500   | 038+600 | 3.50  | Baik          |
| 44 | 038+600   | 038+700 | 5.70  | Rusak Sedang  |
| 45 | 038+700   | 038+800 | 4.94  | Rusak Sedang  |
| 46 | 038+800   | 038+900 | 3.87  | Baik          |
| 47 | 038+900   | 039+00  | 4.41  | Rusak Sedang  |
| 48 | 039+00    | 039+100 | 4.73  | Rusak Sedang  |
| 49 | 039+100   | 039+200 | 5.05  | Rusak Sedang  |
| 50 | 039+200   | 039+300 | 3.30  | Baik          |
|    | Rata-rata |         | 4.57  | Rusak Sedang  |

(Sumber: Hasil olah data IRIMeter-2)

# Pengolahan Data

Untuk mengetahui Nilai IRI kerusakkan jalan pada ruas hamadi-entrop kelapa dua,

langkah-langkah analisis yang dilakukan sebagai berikut Pengambilan data nilai kerusakkan jalan.



3. HASIL DAN PEMBAHASAN

Dari hasil penilaian kondisi perkerasan dengan menggunakan metode IRI

didapatkan nilai ketidakrataan rata-rata pada ruas Jalan Hamadi – Entrop Kelapa Dua dari Sta. 034+300 sampai Sta.039+300 yaitu sebesar 4,57 m/km.

# FAKULTAS TEKNIK UNIVERSITAS WIRARAJA SUMENEP - MADURA

Tabel 2 Persentase Kondisi Permukaan Jalan Berdasarkan Nilai IRI (Kiri)

| Kondisi Permukaan | Jumlah Segmen | Persentase (%) |
|-------------------|---------------|----------------|
| Baik              | 41            | 82%            |
| Sedang            | 9             | 18%            |
| Jumlah            | 50            | 100%           |

# PENANGAN KONDISI DAN JENIS PERBAIKAN

#### A. Kerusakkan Jalan

Jenis penanganan yang dilakukan berdasarkan dari hasil perhitungan nilai IRI. Penentuan kondisi permukaan dan jenis penanganan berdasarkan Persentase kondisi permukaan jalan berdasarkan nilai IRI, dapat dilihat pada Tabel diatas variabel disebut parameter statistik. Pengukuran parameter statistik yang digunakan dalam Analisis Data Hidrologi adalah rata-rata, deviasi standar, koefisien varian, koefisienkemencengan (Skewness), dan koefisien Kurtosis. Perhitungan parametric stasistik dapat dilihat pada Tabel dibawah ini:

Tabel 3 Jenis penanganan jalan berdasan kondisi Nilai Iri

|    | Stasiun Stasiun |         | Nilai         | Vilai            |                      |
|----|-----------------|---------|---------------|------------------|----------------------|
| No | Awal            | Akhir   | IRI<br>(m/km) | Kondisi<br>Jalan | Jenis Penanganan     |
| 1  | 034+300         | 034+400 | 3.98          | Baik             | Pemeliharaan Rutin   |
| 2  | 034+400         | 034+500 | 3.98          | Baik             | Pemeliharaan Rutin   |
| 3  | 034+500         | 034+600 | 4.10          | Rusak            | Pemeliharaan Berkala |
| 4  | 034+600         | 034+700 | 3.87          | Baik             | Pemeliharaan Rutin   |
| 5  | 034+700         | 034+800 | 4.08          | Rusak            | Pemeliharaan Berkala |
| 6  | 034+800         | 034+900 | 3.87          | Baik             | Pemeliharaan Rutin   |
| 7  | 034+900         | 035+00  | 3.11          | Baik             | Pemeliharaan Rutin   |
| 8  | 035+00          | 035+100 | 3.33          | Baik             | Pemeliharaan Rutin   |
| 9  | 035+100         | 035+200 | 3.54          | Baik             | Pemeliharaan Rutin   |
| 10 | 035+200         | 035+300 | 3.44          | Baik             | Pemeliharaan Rutin   |
| 11 | 035+300         | 035+400 | 3.44          | Baik             | Pemeliharaan Rutin   |
| 12 | 035+400         | 035+500 | 3.33          | Baik             | Pemeliharaan Rutin   |
| 13 | 035+500         | 035+600 | 3.00          | Baik             | Pemeliharaan Rutin   |
| 14 | 035+600         | 035+700 | 3.90          | Baik             | Pemeliharaan Rutin   |
| 15 | 035+700         | 035+800 | 3.20          | Baik             | Pemeliharaan Rutin   |
| 16 | 035+800         | 035+900 | 3.33          | Baik             | Pemeliharaan Rutin   |
| 17 | 035+900         | 036+00  | 3.76          | Baik             | Pemeliharaan Rutin   |
| 18 | 036+00          | 036+100 | 3.98          | Baik             | Pemeliharaan Rutin   |
| 19 | 036+100         | 036+200 | 3.70          | Baik             | Pemeliharaan Rutin   |
| 20 | 036+200         | 036+300 | 3.87          | Baik             | Pemeliharaan Rutin   |
| 21 | 036+300         | 036+400 | 3.76          | Baik             | Pemeliharaan Rutin   |
| 22 | 036+400         | 036+500 | 3.54          | Baik             | Pemeliharaan Rutin   |
| 23 | 036+500         | 036+600 | 3.44          | Baik             | Pemeliharaan Rutin   |
| 24 | 036+600         | 036+700 | 3.33          | Baik             | Pemeliharaan Rutin   |
| 25 | 036+700         | 036+800 | 3.65          | Baik             | Pemeliharaan Rutin   |

#### FAKULTAS TEKNIK UNIVERSITAS WIRARAJA SUMENEP - MADURA

| No | Stasiun   |         | Nilai <sub>Vandisi</sub> | Kondisi |                      |
|----|-----------|---------|--------------------------|---------|----------------------|
|    | Awal      | Akhir   | IRI<br>(m/km)            | Jalan   | Jenis Penanganan     |
| 26 | 036+800   | 036+900 | 3.87                     | Baik    | Pemeliharaan Rutin   |
| 27 | 036+900   | 037+00  | 4.00                     | Rusak   | Pemeliharaan Berkala |
| 28 | 037+00    | 037+100 | 3.87                     | Baik    | Pemeliharaan Rutin   |
| 29 | 037+100   | 037+200 | 3.98                     | Baik    | Pemeliharaan Rutin   |
| 30 | 037+200   | 037+300 | 3.33                     | Baik    | Pemeliharaan Rutin   |
| 31 | 037+300   | 037+400 | 3.22                     | Baik    | Pemeliharaan Rutin   |
| 32 | 037+400   | 037+500 | 3.54                     | Baik    | Pemeliharaan Rutin   |
| 33 | 037+500   | 037+600 | 3.65                     | Baik    | Pemeliharaan Rutin   |
| 34 | 037+600   | 037+700 | 3.11                     | Baik    | Pemeliharaan Rutin   |
| 35 | 037+700   | 037+800 | 3.10                     | Baik    | Pemeliharaan Rutin   |
| 36 | 037+800   | 037+900 | 3.65                     | Baik    | Pemeliharaan Rutin   |
| 37 | 037+900   | 038+00  | 3.33                     | Baik    | Pemeliharaan Rutin   |
| 38 | 038+00    | 038+100 | 4.19                     | Rusak   | Pemeliharaan Berkala |
| 39 | 038+100   | 038+200 | 3.54                     | Baik    | Pemeliharaan Rutin   |
| 40 | 038+200   | 038+300 | 3.11                     | Baik    | Pemeliharaan Rutin   |
| 41 | 038+300   | 038+400 | 3.40                     | Baik    | Pemeliharaan Rutin   |
| 42 | 038+400   | 038+500 | 3.54                     | Baik    | Pemeliharaan Rutin   |
| 43 | 038+500   | 038+600 | 3.50                     | Baik    | Pemeliharaan Rutin   |
| 44 | 038+600   | 038+700 | 5.70                     | Rusak   | Rekonstruksi         |
| 45 | 038+700   | 038+800 | 4.94                     | Rusak   | Pemeliharaan Berkala |
| 46 | 038+800   | 038+900 | 3.87                     | Baik    | Pemeliharaan Rutin   |
| 47 | 038+900   | 039+00  | 4.41                     | Rusak   | Pemeliharaan Berkala |
| 48 | 039+00    | 039+100 | 4.73                     | Rusak   | Pemeliharaan Berkala |
| 49 | 039+100   | 039+200 | 5.05                     | Rusak   | Rekonstruksi         |
| 50 | 039+200   | 039+300 | 3.30                     | Baik    | Pemeliharaan Rutin   |
|    | Rata-rata |         | 4.57                     | Rusak   |                      |

Berdasarkan tabel 2 diatas maka dapat diketahui persentase kondisi serta penanganan sepanjang ruas Jalan Hamadi – Entrop Kelapa Dua (STA.034+300 -STA.039+300) sebesar 82% kondisi baik dengan penanganan pemeliharaan rutin, sebesar 18% kondisi sedang dengan penanganan pemeliharaan berkala. Setelah dilakukan evaluasi kondisi jalan pada ruas jalan tersebut didapat beberapa jenis kerusakan yang sudah menimbulkan ketidaknyamanan dan mengkhawatirkan keselamatan pengendara. Tingkat kerusakan yang terjadi pada ruas jalan tersebut Hamadi – Entrop Kelapa Dua (STA. 034+300 – STA. 039+300) terbagi dalam tiga kategori, baik,kerusakan yaitu kondisi sedang (medium) dan kerusakan ringan (low). Dan berdasarkan Nilai IRI rata-rata kedua sisi ruas Jalan Hamadi — Entrop Kelapa Dua (STA.034+300 — STA.039+300) diperoleh nilai IRI rata-rata sebesar 4,57 m/km, termasuk kondisi Rusak Sedang dengan jenis penanganan Pemeliharaan Berkala.

#### 4. KESIMPULAN DAN SARAN

Berdasarkan hasil evaluasi kerusakan yang penulis lakukan pada ruas Jalan Hamadi – Entrop Kelapa II (STA. 034+300–STA. 039+300) dengan menggunakan alat Roughmeter II Hasil persentase berdasarkan nilai IRI yaitu sebesar 82% kondisi baik, sebesar 18% kondisi rusak sedang.

Jenis penanganan setiap segmen sepanjang ruas Jalan Hamadi-Entrop Kelapa II (STA. 034+300- STA. 039+300) sebesar 82% penanganan pemeliharaan rutin pada kondisi permukaan baik, sebesar 18% penanganan pemeliharaan berkala pada kondisi permukaan rusak sedang.

Diharapkan supaya pemerintah yang berwewenang tidak membiarkan sampai berlarut-larut kerusakan yang terjadi. Sebab dari hasil penelitian diatas sebesar 18% kondisi rusak sedang, hal ini perlu penanganan langsung agar tidak menjadi rusak berat dan kerusakan itu tidak ditangani dengan cepat dapat menimbulkan kerusakan yang lebih parah.

Penelitian juga masih terbatas dengan lapis perkerasan aspal sehingga untuk jalan kerikil tidak dapat terbaca dan agar kerusakan yang terjadi dapat ditangani secara dini, maka pemerintah atau instansi yang terkait perlu mendokumentasikan riwayat kerusakan jalan, dan pelaksanaan evaluasi perbaikan maupun pemeliharaan jalan dalam bentuk sistem.

# 5. DAFTAR PUSTAKA

- Affandi, Muhammad Furqon. (1989). Dasar Dasar Penentuan Kalibrasi dan Standarisasi Roughometer. Indonesia.
- ASTM E1926 98, Standart Practice for Computing Internasional Roughness Indexof Roads from Longitudinal Profile Measurement.
- Anonim, 2009. Undang-Undang No.22 tahun 2009, Tentang Lalu Lintas dan Angkutan Jalan.Jakarta: Pemerintah Republik Indonesia.
- Departemen Pekerjaan Umum. 2007. Faktor-Faktor Penyebab Kerusakan Jalan. Jakarta.
- Direktorat Jenderal Bina Marga. (1990). Tata Cara Penyusunan Program Pemeliharaan Jalan Kota No. 018/T/BNKT/1990. 018, 47.
- Departemen Pekerjaan Umum. 2004. Undang-Undang Republik Indonesia

- Nomor 38 Tahun 2004 Tentang Jalan. Jakarta: Direktorat Jenderal Bina Marga.
- Direktorat Jendral Bina Marga DPU. Manual pemeliharaan Jalan Nomor: 03/MN/B/1983.
- Departemen Perhubungan, 1993. Peraturan pemerintah No. 43 Tahun 1993 Tentang Prasarana dan Lalu lintas. Jakarta.
- Direktorat Jenderal Bina Marga, 1997. Tata Cara Perencanaan Geometrik Jalan Antar Kota, No.038/T/BM/1997. Badan Penerbit Pekerjaan Umum, Jakarta
- Direktorat Jenderal Bina Marga, 1992, Standar Perencanaan Geometrik Untuk Jalan Perkotaan, Badan Penerbit Pekerjaan Umum, Jakarta
- Hardiyatmo, H.C., 2015. Perancangan Perkerasan Jalan Dan Penyelidikan Tanah.Cetakan Ke-2, Gadjah Mada University Press, Yogyakarta.
- Hikmat Iskandar, 2007, Volume Lalu-Lintas Rencana Untuk Geometrik dan Perkerasan Jalan, Jurnal Puslitbang Jalan dan Jembatan, Departemen Pekerjaan Umum, Vol. 24, No. 3/Desember 2007, P. 36 – 54.
- Husein Umar. 2013. Metode Penelitian Untuk Skripsi dan Tesis. Jakarta: Rajawali
- Hendarsin, Shirley L. 2000. Penuntun Praktis Perencanaan Teknik Jalan Raya. Bandung: Politeknik Negeri Bandung
- Husein Umar. 2013. Metode Penelitian Untuk Skripsi dan Tesis. Jakarta: Rajawali
- Indriantoro, Nur dan Bambang Supono. 2013. Metodologi Penelitian Bisnis Untuk Akuntansi dan Manajemen. Yogyakarta: FEB Universitas Gajah Mada.
- Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2011). Tata Cara Pemeliharaan Dan Penilikan Jalan, Jakarta.

#### FAKULTAS TEKNIK UNIVERSITAS WIRARAJA SUMENEP - MADURA

- Mubarak, H. (2016). Analisa Tingkat Kerusakan Perkerasan Jalan Dengan Metode Pavement Condition Index ( Pci ) Studi Kasus : Jalan Soekarno Hatta Sta . 11 + 150. Jurnal Saintis, 16(1), 94–109.
- Peraturan Pemerintah Republik Indonesia, 2006, PP No. 34 Tahun 2006 Tentang Jalan, Jakarta.
- Sukirman, S., (1992). Perkerasan Lentur Jalan Raya. Penerbit Nova, Bandung.
- Siahaan, Doan Arinata dan Medis S Surbakti. 2014. Analisis Perbandingan Nilai IRI Berdasarkan Variasi Rentang Pembacaan NAASRA. Medan : Universitas Sumatera Utara.
- Saputro, D.A. (2015). Perbandingan Evaluasi Tingkat Kerusakkan Jalan Dengan Metode Bina Marga Dan Metode Paver (Studi Kasus :Kecamatan Kepanjen Kabupaten Malang Dan Sekitarnya).
- Suherman. (2008). Studi Persamaan Korelasi Antara Ketidakrataan Permukaan Jalan dengan Indeks Kondisi Jalan. Jurnal Teknik Sipil Politeknik Negeri Bandung, Bandung.



Copyright© by the authors. Licensee Jurnal Ilmiah MITSU, Indonesia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0) license

(https://creativecommons.org/licenses/by-nc-sa/4.0/)

